Humboldt Bay Vertical Reference System (HBVRS)

Draft Science Plan Outline Oct-29-2010

Goal(s) of Project
◊ Study vulnerability of southern CSZ Deformation Zone
◊ Improve vertical reference accuracy in southern CSZ region

Project Benefits and Management Applications
◊ Foundational information for all sea level rise predictions
 o Downscaling of global models to local and regional areas
 o Remove significant tectonic impacts to SLR predictions
 o Geoid rectification
◊ Pre-disaster (tsunami, flood) mitigation planning
 o Establish pre-seismic baseline survey to assure accurate and timely post-earthquake survey results
 o Use vertical tectonic rates to estimate future co-seismic subsidence & inundation from Cascadia subduction zone
 o Improve flood modeling
 o Quantify uncertainty
 o Analyze potential changes to roads, navigation channels, and mariculture environment due to tectonic uplift/subsidence
◊ Contribute updated leveling data to NGS NAVD88 bench marks
◊ Contribute GPS data to NGS Height Modernization Program

Framework
◊ Collaborators
 o Expertise of each
 o Role/research of each
 o Contact West Coast Governors Agreement Action Coordination Team members
 ▪ Compare & align project benefits with WCGA directives (examples below)
 • Climate Change; SLR, shoreline changes, coastal hazards
 • Integrated Ecosystem Assessment; HBI as EBM partner
 • Sustainable Coastal Communities; support local planning to sustainable fisheries and infrastructure
 • Seafloor Mapping; map habitat of tidelands
◊ Budget estimate
 o Number of people/students
 o Estimate time/resources
 o Equipment needs
 o Transportation needs
 o Other budget items
Project Scope

◊ Geographic
 o Shelter Cove, Eel Delta, Humboldt Bay, Trinidad, Klamath, Crescent City
 o Pt. Arena/Arena Cove?

◊ Tide gages & water levels
 o How many; 7 new tide gages: 1 Shelter Cove, 1 Eel Delta, 3 Humboldt Bay, 1 Trinidad, 1 Klamath
 o Re-occupy all NOAA temporary historic tide gage locations (#?) in Crescent City, Trinidad, and Eureka.
 o CENCOOS upgrade for water level measurements
 ▪ Stationary gage with vented system and external data logger; tie gage height to leveled bench marks
 o Stream gage stations
 ▪ USGS Mad River bridge Arcata– tie to NAVD88

◊ Leveling line surveys
 o Level survey training of students/personnel; Univ. of Oregon/HSU collaboration
 o Equipment
 ▪ Ray Weldon
 ▪ Humboldt County Surveyors Office
 ▪ Cal Trans
 o Personnel
 ▪ Univ of Oregon & HSU
 ▪ Caltrans
 ▪ Humboldt County Surveyors Office
 ▪ Private sector surveyors
 o Evaluate proposed bench marks to be included in survey
 o Re-level 1988 level lines; tie to 1931, 1944, & 1967 where possible
 o Analyze vertical rates (1931, 1944, 1967, 1988, present)
 o Local survey controls – other opportunities to re-level and tie to
 ▪ Public
 Humboldt County – New Navy Base Rd
 NRCS – Eel Delta
 CalTrans – Various project leveling
 ▪ Private
 Northern Hydrology – Mad River slough, Jacoby Creek

◊ Height Modernization Program
 o Collect new GPS horizontal control data to NGS Height Mod. Standards
 o Occupy bench marks with gravimeter to improve local geoid values

◊ Data processing/archiving/dissemination/modeling – support some endusers
 ▪ Anaylyze and difference historic level line elevations
 ▪ Identify expert to ‘Blue Book’ new level data – submit to NGS to publish updates in NGS database
 ▪ Process all available GPS observations 1993-present.
• Bring new tide gage and CGPS data online for daily downloads and real time data stream
• Test new leveling and tide data in local hydrologic/circulation models
• Model observed vertical rates with most current subduction zone model
• Model eel grass and mariculture habitat changes change due to tectonic uplift/subsidence
• Model horizontal and vertical data across all mapped faults
• Others

◊ Monitoring/maintenance of reference network
• Budget to resurvey with levels and GPS after large earthquake
• Budget for initial re-level plus 25% (?) to re-level as deemed necessary
• Update bench mark elevations and determine relative baseline measurements to nearby CGPS stations through repeated GPS surveys
• QA/QC and periodically analyze data from tide gages and any new CGPS
• Add, replace, or make effort to preserve bench marks as deemed necessary
• Maintain power/communications at new tide gage and CGPS locations